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Abstract 

This article examines the group polarization process when agents are faced with a risk for 

which the probability of occurrence is not perfectly known. First, we show information de-

struction through an informational cascade phenomenon. Then, we analyze how this ineffi-

ciency is amplified if individuals with the same type of risk-related behaviour group together. 

Two extensions are detailed: consideration of the possibility that individual agents participate 

in more than one group; introduction of agents highly confident in their own information, en-

abling cascades to be ‘broken’. Under conditions, the behaviour of these agents, costly at the 

individual level, is collectively efficient. 
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Introduction  

Decision under risk appears to be highly polarized. Firstly, polarization across different kind 

of risk: several risks are systematically underestimated while others are overestimated2. Sec-

ondly, polarization of a given risk among different groups and over time. As stressed by Ku-

ran and Sustein (1999) individual perceptions of a risk are framed socially through interac-

tions with others. Word of mouth is one of the important factors in risk evaluation. This is 

consistent with findings that perceptions and attitudes toward a given risk can vary greatly 

across cultures and across time (Douglas and Wildavsky 1982). Crime perception, for exam-

ple, offers major variations among cities, which are not purely correlated with crime level as 

we can see in the International Crime Victims Surveys. While nuclear power has a relatively 

wide acceptance in France, it arouses fear in Germany. Such variations across cultures and 

across time is a widespread phenomenon that deserves research interest. The motivation of the 

paper is based on this point.  

When agents form beliefs without possessing precise information, they rely on a small num-

ber of heuristic principles that reduce the scale of the cognitive task involved to simpler pro-

                                                 
1 Associate Professor – University Paris 8 – jacques.pelletan@dauphine.fr  
2 Tversky and Koehler (1994) ask to evaluate the probability for different causes of death. Homicide appears to 

be overestimated (evaluated at 10% whereas it represents in fact only 1% of death). Conversely, heart diseases 

are underestimated (22% instead of 34%).  
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cesses of judgement3. In this context, social processes contribute to the evolution of risk per-

ception. Nevertheless, false beliefs can spread and lead to collective irrationality, despite the 

fact that each agent is individually rational (Hakes and Viscusi 1997). In this context, infor-

mational cascades – ie optimality for an individual to follow the behaviour of the preceding 

individual without regard to his own information - can produce systematic and persistent mis-

perceptions. Individuals converge on one behaviour on the basis of some but very little infor-

mation. These phenomena can explain both the conformism, polarization and the fragility of 

human behaviour as stressed by Bickchandani, Hirshleifer and Welch (1992), hereafter de-

signed as BHW. Such phenomena interact with psychological dimensions, most notably emo-

tion.  

While real decisions in risky context are based on highly complex motivations, the cascade 

theory can nevertheless provide meaningful insights to understand localized conformity in 

risk-related behaviour. As cascade theory is a theory of information, it is central to understand 

decision under uncertainty. If someone has little information about the magnitude of a risk, it 

is easier to be guided by others in order to economize on both mental effort and time. Such 

cognitive biases can be further amplified by the role played by emotion in individual and 

group behaviour, as we will demonstrate below4. Obvisously, psychological traits have been 

deeply analyzed in risk perception theory. But most of them say nothing about the social di-

mensions that shape risk judgments and interact with psychological dimensions. In this arti-

cle, we try to articulate both of these elements.  

The inspiration of our model is based on the BHW paper. We analyze here specifically the 

case of an imperfect knowledge on the probability of occurrence. In fact, the role of social 

interactions in a context of imperfect information has been the subject of surprisingly little 

research to understand risk-related behaviour. Kuran and Sunstein (1999) stress the availabil-

ity heuristic already formulated by Kahneman and Tversky (1974): a risk is more present in 

the mind and is considered thereby to be more plausible if it is frequently raised in discus-

sions. More generally, the authors stress that the availability of information shapes judgments 

about the magnitude of various risks and consequent individual actions. One risk may gain 

salience and become the object of tight regulation while another, which experts deem equiva-

lent, is treated with less regulation. If the informational cascade concept has been used to un-

derstand the insurance market5, little work has been produced to show how personal traits and 

social interactions interact in the elaboration of risk perception and mitigation at the individu-

al level. For the purpose of the present article, we propose a new approach, allowing to under-

stand group polarization in risk evaluation and mitigation. In the first section, we analyze the 

information destruction process through the classic informational cascade phenomenon. The 

second section addresses the specific case of homophily – ie when individuals with the same 

type of risk-related behaviour group together – which amplifies information destruction. The 

third and fourth sections aim at studying the ways to improve informational efficiency: firstly, 

                                                 
3 Kahneman and Tversky (1974) describe three broad categories of heuristics: the representativeness heuristic 

(when agents need to analyze a risk situation, they often do so by likening it to a set of previously known situa-

tions that appear to them to be similar); the availability heuristic (the risk is assessed on the basis of the infor-

mation that comes most readily to mind, that is to say the information that is the most publicised, striking or 

recent); the anchoring heuristic (estimation of risk in this case is based on a previous event – the ‘anchor’ – 

which is taken as a reference and adjusted to represent the situation at issue). The well-documented availability 

heuristic in particular shows that agents form beliefs about risks on the basis of very little information. The heu-

ristics they highlight are convenient, but lead to biased estimates.  
4 The recent inputs of neurobiological research have shown that emotion plays a major role in rational decision-

making under uncertainty. See notably Rustichini et al. (2011).  
5 See for example d’Arcy and Oh (1997) or Seog (2008).  
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with agents participating in several separate groups; secondly, with agents having excessive 

confidence in their own information.  

 

1 – Imprecise probabilities and belief propagation: the case of information-

al cascades  

For expositional clarity, we begin with the classical BHW model. The probability of risk oc-

currence is supposed to take two values, one low - 'p  - and the other high - ''p . The real 

probability of occurrence is one of these two probabilities but individual agents have an im-

perfect knowledge about it.  

The consequence of risk occurrence can be estimated to be V (the same for each agent). The 

cost of a mitigation action is C (the same for each agent). We assume:  

p '.V < C < p ''.V  

so that it is optimal to adopt a mitigation action if and only if the probability is high. Each 

individual formulates successively a belief as to 'p  or ''p  and adopts behaviour that is ra-

tional on the basis of that belief (mitigation if the economic agent thinks that the probability is 

high and no mitigation in if the probability is thought to be low). The ordering of individuals 

is exogenous and is known to all. The ex-ante probability that 'pp =  is one-half. Each agent 

receives private information or a signal before decision. This private information can take the 

value HS = or LS = . It can be interpreted as a signal deduced from personal experience or 

personal information sources regarding the risk. In addition, each of them, with the exception 

of the first, can observe the previous decisions (for example, leaving home with an umbrella 

reveals that you think it will rain). The information conveyed by actions is the most credible 

about beliefs since everybody must reveal them without lying and sometimes without speak-

ing (as in the umbrella example). But, the private information of earlier agents can’t be ob-

served. Based on private information and observations he decides whether or not to adopt 

mitigation action.  

Without loss of generality, we assume that the real value of the probability is 'p . Thus, it is 

optimal not to adopt any action of risk mitigation. Because of the imperfect information, one 

portion of the total population will assess the probability correctly, while another portion will 

overestimate the risk and adopt inappropriate mitigation action. The opposit case, which leads 

to an underestimation of the risks, is symmetrical and our model does not therefore reduce the 

generality of the question.   

The uncertainty structure of the model can be presented as follows. The prior belief is 

( ) ( ) 2/1''' == pPpP . The private signals are iid among individuals, conditional of the state of 

the nature (here 'p  without loss of generality) and this structure is common knowledge. 

( ) ( ) 2/1''/'/ ≥== qpHPpLP . By difference ( ) ( ) qpHPpLP −== 1'/''/ . We can call q the 

“strength” of the signal or the informativity. By Bayes rules, we have: 

( ) ( ) qHpPLpP == /''/'  and ( ) ( ) qLpPHpP −== 1/''/' .  

Let us investigate the possibility of a cascade. As a tie-breaking convention, an individual 

who can infer as many signals in the opposit directions behaves in accordance with his own 
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signal. Thus, the first individual adopts mitigation action if the personal signal is H (the un-

derlying belief is a probability ''p ) and rejects this action if the personal signal is L (the un-

derlying belief is a probability 'p ). If the first individual adopted, the second one adopts if his 

signal is also H. However, in case of L, he rejects (he can infer the same number of signals 

and behaves according to his own information). Similarly, if the first had rejected, the second 

rejects in case of signal L and adopts in case of H. The third individual has three possible situ-

ations. Both have adopted the mitigation measure before him and he adopts (a cascade based 

on a ''p  belief occurs); both have rejected the mitigation measure and he rejects (a cascade 

based on a 'p  belief occurs); one has adopted and the other rejects the mitigation measure. In 

the last case H and L cancel each other and the third individual is in the same situation as the 

first one. His personal signal determines his choice. A similar analysis shows that the fourth 

individual would be in the same situation as the second, the fifth as the third, and so 

forth…Given that 'p  is the correct value of the probability, with this decision rule, we can 

derive the probability of correct/incorrect/no cascade after two individuals:  

 

- No cascade occurs if there is one H and one L, with a probability 2.q. 1− q( ) 

- A correct cascade if there are two L signals, with a probability 2q  

- An incorrect cascade if there are two H signals, with a probability ( )
2

1 q−  

More generally, two consecutives L after an alternance of signals initiates a correct cascade 

based on a p’ perception and two consecutives H after an alternance of signals initiates an 

incorrect cascade based on a p’’ perception. The last case in which no cascade occurs is H and 

L alternance.  

The probability that there is no cascade after an even number of n agents (NC) is therefore: 

( )( )21..2
n

nc qqP −=   which tends to 0 as n tends to infinity (we consider the case in which the 

number of individuals in the group is very large).  

The probability of a correct cascade (CC) is obtained by summing the probabilities that it will 

appear after each agent, up to agent n. This can be written as follows:  

( )( )
( )( )( )
( )

2 2
2 12

1

1 2 1

2 1
1 2 1

n

n

k

cc

k

q q q

P q q q
q q

−

=

− −

= − =
− −

∑ , which tends to :  

( )22

2

1 qq

q
fq

−+
=

 

Similarly for the probability of a cascade that is incorrect (IC):  
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( ) ( )( )
( ) ( )( )( )

( )

2 2
2 12

1

1 1 2 1

1 2 1
1 2 1

n

n

k

ic

k

q q q

P q q q
q q

−

=

− − −

= − − =
− −

∑ , which tends to:  

( )

( )22

2

1

1
1

qq

q
fq

−+

−
=−

 

If the population includes a large number of individuals and social groups (which supposes 

that the society is socially fragmented), according to the law of large numbers, a portion qf  of 

the total population will correctly assess the probability of occurrence p and not undertake 

mitigation action (supposing that the real probability is 'p ), whereas a complementary por-

tion 1 qf−  will arrive at a biased assessment and undertake mitigation action whereas it is not 

necessary. Local informational cascades can be limited, for example, to a geographical area, a 

demographic subgroup, etc… Such a model proposes an explanation of the widely accepted 

fact of great variability and polarization among different groups – cities for example – in risk 

perception and regulation (the case of crime is highly relevant to illustrate this issues). That is 

why this framework provides so meaningful insights in risk perception understanding.  

The decision rule presented above is rational at individual level, but leads to the destruction of 

information. Indeed, cascade prevents the aggregation of information on risk of numerous 

individuals. If the information of many previous individuals is aggregated, later individuals 

should converge to correct mitigation decision. However, once a cascade has started, actions 

convey no information about private signals and an individual’s action does not improve later 

decisions. If reporting the occurrence of a given risk can be seen as an action, the perception 

of a given risk can be heightened by giving high publicity and report to existing occurrences 

whatever personal information. In this case, the collective misperception (high probability 

cascade in case of low probability risk) would make agents more willing to report occurrenc-

es, reinforcing high probability cascade. By the same logic, the perception of another risk can 

be lowered through information suppression of given occurrences. In this case, the collective 

misperception (low probability cascade in case of high probability risk) would make agents 

less willing to report occurrences, reinforcing low probability cascade. 

If the aim of our paper is to understand the polarization process and local conformity in terms 

of risk perception, we must also analyze how the cognitive issue raised above can be ampli-

fied by emotional factors. As we know, emotional factors are of tremendous importance in 

risk related behaviour. Indeed, some individuals are worry while others are abnormally un-

concerned when faced with certain types of risk. Moreover, such agents often tend to form 

groups, and this has the effect of increasing perceptual bias in a systematic – i.e. non-erratic – 

fashion. In the case considered here – a low value for p – worriers will amplify their propensi-

ty to overestimate risk. Similarly, relaxed personalities will show a tendency to underestimate 

risk when the probability is high. We can now examine the formal processes underlying such 

group polarization.  

 

2 – Information destruction: the case of homophily in groups 

We know, in many cases, that the constitution of groups is based on partners with similar 

characteristics. For example, politically engaged newspapers are most of time read by a part 
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of population of the same opinion. It is partly due to this particular feature that ideas, true or 

false, spread most effectively. This is referred to as homophily (See most notably McPherson, 

Smith-Lovin and Cook 2001). In the case studied here, we consider that groups form between 

partners who have a same bias towards a given risk (worriers and worry-free). Here again, 

examples can be found. The green party will include more individuals for which environmen-

tal risks are major issues and, among them, bad news conveying probability are frequently 

overweighted. The right wing will include more individuals for which crime constitutes a ma-

jor risk and bad news conveying probability are also frequently overweighted. Such kind of 

polarization process can be called ex ante polarization. They are due to opposit risk attitudes. 

And homophily is crucial in risk related behaviour. In fact, people’s preconceptions about risk 

can exhibit selective trust and mistrust about signals. This erroneous probability perception is 

not common knowledge. The structure can be modelled as follows: 

 

- The real strength of the signal is q as we have ( ) ( ) 2/1''/'/ ≥== qpHPpLP  and 

( ) ( )'/ ''/ 1 / 2P p L P p H q= = ≥ . But, worriers will perceive a signal of high probability 

risk as having a strength of q+x; a signal of low probability risk as having a strength of q-

x. We can note Q this probability perception.  

- In this new framework, ( ) ( )'/ '/Q p L q x q P p L= − < = , with 1
2

q x− > , and 

( ) ( )''/ ''/Q p H q x q P p H= + > = . By difference, ( ) ( )'/ 1 1 '/Q p H q x q P p H= − − < − =  

and ( ) ( )''/ 1 1 ''/Q p L q x q P p L= − + > − = . These agents thus attach more importance to 

pessimistic signals.  

- The worry-free will perceive a high probability signal as having a strength of q-x; a low 

probability signal will have a perceived strength of q+x. We can note R this probability 

perception. In this new framework, ( ) ( )'/ '/R p L q x q P p L= + > = and 

( ) ( )''/ ''/R p H q x q P p H= − < = , with 1
2

q x− > . By difference, 

( ) ( )'/ 1 1 '/R p H q x q P p H= − + > − = and ( ) ( )''/ 1 1 ''/R p L q x q P p L= − − < − = . They 

thus give greater weight to optimistic signals. Such new tie-breaking assumptions change 

the behaviour of the decider only when the two kinds of signal are of equal number. They 

change the probability of correct and incorrect cascades. Some definition first.  

Definition : Mean Preserving Group Polarization (MPGP) is defined as a situation where the 

groups presenting the two types of bias – groups of worriers and worry-free – are equally rep-

resented within the population. Thus, the mean perception of the signal is keeped unchanged.  

Proposition 1 : In case of MPGP, the share of the population estimating correctly p is lower 

than without homophily. This means that the ex ante polarization process itself brings infor-

mation destruction at the collective level.  

Proof : In principle, four cases may arise: high probability risk and a group of worriers; high 

probability risk and a group of worry-free agents; low probability risk and a group of worri-

ers; low probability risk and a group of worry-free agents. The first and fourth cases are in 

fact symmetrical and we have chosen, without loss of generality, a real probability that is low. 

The two types of groups are matched with two distinct probabilities 1qf  and 2qf  of obtaining 

correct cascades with respectively worry-free and worriers. The first case is referred to here as 
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‘positive homophily’ (PH) insofar as the homophily is oriented in the direction of reality (bias 

of worry-free agents toward perception of low probability while the probability is really low). 

In the second case, the term used is ‘negative homophily’ (NH), since the homophily runs 

counter to the facts.  

First, the case of worry-free agents. Let us investigate the possibility of a cascade. The first 

individual adopts mitigation action if the personal signal is H as ( ) 1''/
2

R p H q x= − >  (the 

underlying belief is a probability ''p ) and rejects this action if the personal signal is L as 

( ) 1'/
2

R p L q x= + >  (the underlying belief is a probability 'p ). If the first individual re-

jected, the second one rejects in any case. If its signal is L, like in the first cascade framework. 

But also, in case of signal H, since the signal corresponding to a low probability is perceived 

as stronger than the contrary signal. There will be therefore a correct cascade in any case. If 

the first had adopted the mitigation action, the second rejects in case of signal L and adopts in 

case of H, thus triggering an incorrect cascade. The third individual has three possible situa-

tions. Both have adopted the mitigation measure before him and he adopts (a cascade based 

on a ''p  belief occurs); both have rejected the mitigation measure and he rejects (a cascade 

based on a 'p  belief occurs); one has adopted and the other rejects the mitigation measure. In 

the last case, the third individual is in the same situation as the first one and his personal sig-

nal determines his choice as the parameter x is supposed to be low and serves only as a tie-

breaking convention in case of an equal number of each signal. A similar analysis shows that 

the fourth individual would be in the same situation as the second, the fifth as the third, and so 

forth…Given that 'p  is the correct value of the probability, with this decision rule, we can 

derive the probability of correct/incorrect/no cascade after two individuals:  

 

- No cascade occurs if there is first one H and then one L, with a probability ( )1q q−  

- A correct cascade if there is first one  L signal, with a probability q  

- An incorrect cascade if there are two H signals, with a probability ( )
2

1 q−  

 

The probability that there is no cascade after an even number of n agents (NC) is therefore: 

( )( )21 1
n

ncP q q= −   which tends to 0 as n tends to infinity (we consider the case in which the 

number of individuals in the group is very large). It corresponds to an alternance of H and L 

in this order.   

To observe a correct cascade, it is necessary and sufficient that a signal L to be received by 

the first agent, or by the third (after an alternance of H and L in this order), or by the fifth (af-

ter an alternance of H and L in this order), and so on. Thus, the probability of there being a 

correct cascade can be written as follows:  
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( )( )
( )( )( )
( )

2

2 1

1

1

1 1

1
1 1

n

n

k

cc

k

q q q

P q q q
q q

−

=

− −

= − =
− −

∑   

It is then easy to see that:  

 1 1
n

cc qP f→+∞
→  , where  

  

fq1 =
q

1− q + q2( )
. Moreover, the following relation is easily verified: 

  

fq1 =
q

1− q + q
2( )

≥ fq =
q

2

q
2

+ 1− q( )
2

 

If the perceptual bias of the agents in the group tends toward attributing greater strength to the 

informative signal (a low real probability and a group of non-worriers), the probability of a 

correct cascade is higher than it is for rational agents. The complementary probability of an 

incorrect cascade, at the limit can be deduced from the above calculation:  

( )

( )

2

1
2

1
1 1

1
q q

q
f f

q q

−
− = ≤ −

− +
. 

 

In the case of a group of worriers, we find in the same way, at the limit:  

  

fq2 =
q2

1− q + q
2( )

 . In addition, the following relation is easily verified: 

  

fq2 =
q

2

1− q + q
2( )

≤ fq =
q

2

q
2

+ 1− q( )
2

 

The complementary probability of an incorrect cascade can then be deduced in the following 

form:  

( )
2

2

1
1 1

1
q q

q
f f

q q

−
− = ≥ −

− +
 

If the perceptual bias of the agents in the group will tend to attribute less strength to the in-

formative signal (a low real probability and a group of worriers), the probability of a correct 

cascade is lower than for rational agents. We can now see how the probabilities of giving a 

correct (incorrect) knowledge about the risk evolve as a function of the parameter q.  

C(I)CWH: a correct (incorrect) cascade without homophily.  
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C(I)CPH: a correct (incorrect) cascade with positive homophily. This is the case in which 

there is a grouping of worry-free individuals (and the probability is low).  

C(I)CNH: a correct (incorrect) cascade with negative homophily. This is the case in which 

there is a grouping of worriers (and the probability is low).  

 

 

 

 

 

 

 

 

 

 

Figure 1 : Proportion of correct and incorrect cascades in the presence of homophily 

What happens in the case of a MPGP? If there are as many groups of worriers as groups of 

non-worriers and a large population, we can analyze the specific effect of group polarization 

and write the share of the population estimating correctly the risk:  

  

fq3 =
1

2
. fq1 +

1

2
. fq2 =

q + q2

2. 1− q + q
2( )

.  

It is then easy to show that for any value of q included in the interval 1
2

,1



 : 

  

fq3 =
q + q

2

2. 1− q + q
2( )

≤
q

2

q
2

+ 1− q( )
2

= fq .  

This means that even if the two types of groups  are equally represented within the popula-

tion, the process of polarization of the groups will itself bring information destruction at the 

collective level. 

 □  

Thus, we have emphasised the role of personal bias for decision under risk in a cascade 

framework. Some individuals, those that we have called ‘worriers’ here, attribute greater 

weight to worrying signals, others, those described as ‘non-worriers’, attribute greater weight 

to signals that are reassuring. But, the intuition behind the proposition stated above is that the 
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process of ex ante polarization, due to homophily, is by itself information destructive even if 

the two biases are equally represented within the population. This ex ante polarization may 

explain why whole segments of the population overestimate or underestimate certain classes 

of risk with, on average, a destruction of information at the collective level.  

We can now look at how these crucial polarization traits can be modified. For this, we go on 

consider two types of organisation based on two types of individual and analyze the degree to 

which those individuals can provide information beneficial to the community.  

 

3 – Avoiding information destruction: nomadism 

We know that communities contain subcommunities mostly based on “inside interactions”. In 

case of homophily, a given subcommunity contains only members of the same kind of risk 

perception: Bayesian, worry-free or worrier. In this context, if a cascade occurs in a subcom-

munity, its members can ignore information provided by outsiders and only follow the cas-

cade. But, it is reductionist to consider that individuals will belong necessarily to only one 

group whose behaviour they follow slavishly. In this section, we analyze the case of agents 

with multiple memberships of different groups. We define a “Nomad” as someone who ob-

serves more than one group before to take a decision. Nomads do not see risk in the same way 

as others and nomadism as well as openness of networks influence greatly risk related behav-

iour6. They can play a pivotal role, able to store up information from different sources. Their 

decisions – or information release - can convey new information for the benefit of the com-

munity as a whole. We do not modelize here the process by which information can be passed 

to the community and focalise only on the information acquisition process by nomads. Three 

assumptions can be made:  

- The observations by the “Nomad” are made after that cascades have occurred (the proba-

bility that there is no cascade decreases rapidly as n increases and the number of individu-

als in each group is assumed to be very large).  

- The choice of the observed groups by each “Nomad” is assumed to be randomly done 

inside one of the four following communities: between worry-free subcommunities, 

Bayesians, worriers or a mix between worry-free and worriers (MPGP situation, ie a 

community where the two kind of bias are equally represented).  

- We assume that the groups in which the “Nomads” participe are not interconnected so that 

the decision made by the “Nomad” does not modify the existing cascades.  

Let us consider an individual who belongs to several different groups (m groups). The agent 

possesses more information due to his comparison of information from the different groups in 

which he is a participant. Thus, he will form his belief in accordance with the majority of the 

cascades he has observed and will adopt behaviour aligned with that belief. If there are the 

same numbers of behaviour patterns of the two types, the individual will follow his own sig-

                                                 
6 For example, the type of involvment in interpersonal networks governs the perception of crime. Individuals 

who have links with only one closed network (comprising, within the same circle, friends, family, colleagues, 

leisure activities, and so on) evidence a greater tendency to overestimate this risk. Conversely, the openness of 

networks modifies the reaction to the risk through the availability of more information. 
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nal, which is correct with a probability q. We still suppose, without loss of generality, that the 

correct probability is low.  

Proposition 2 : Let us suppose that the “Nomad” observes groups in one of the three follow-

ing communities: worry-free, bayesian agents or a MPGP situation. Then, the probability of 

correct belief about p increases with m and tends to 1 when m tends to infinity. If a “Nomad” 

observes groups of worriers, the probability of a correct belief about p increases with m and 

tends to 1 when m tends to infinity if and only if: 

  
q > 5 − 1( )/ 2

.  

Proof : With Bayesian agents, ie without homophily, behaviour can be captured formally us-

ing a binomial law with parameters qf  and m. The probability that the number of correct cas-

cades is r can be written as follows:  

  

σ r( )=
m!

r! m − r( )!
. fq

r 1− fq( )
m− r

 

The probability of an equal number of cascades of each type can take two values. If m is an 

even number, its value is:  

  

σ
m

2







=

m!

m

2
!
m

2
!

. fq

m

2 1− fq( )
m

2

 

If m is an odd number, its value is 0.  

The probability that an individual, having observed m cascades, grasp correctly the probabil-

ity of occurrence for the risk can then be written: 

If m is even:  

  

g q,m( )=
m!

r! m − r( )!
. fq

r 1− fq( )
m− r

r =
m

2
+1

m

∑ + q.σ
m

2








 

If m is odd: 

  

g q,m( )=
m!

r! m − r( )!
. fq

r 1− fq( )
m− r

r =
n+1

2

m

∑
 

We can now look at how the function g evolves with the strength of the signal and the number 

of observed groups:  
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Figure 2 : Variation of g with the signal strength and the number of groups 

 

According to the law of large numbers, the empirical probability (the proportion of correct 

cascades) tends to the theoretical probability (the probability that any given cascade is a cor-

rect one) as the number of observations rises. If qf  is greater than ½, we can express formal-

ly:  

  

r

m

m→+∞
 → fq >

1

2  

We can obtain from this: 

  
∀fq >

1

2
,ε,µ > 0,∃m0

 

such that :    ∀m ≥ m0,  then: 

    

P
r

m
∈ fq − µ, fq + µ 







≥ 1− ε

 

which shows us, if we choose µ < fq −
1

2
:  

  ∀ε > 0,∃m0 such that,   ∀m ≥ m0,  then:  
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P
r

m
>

1

2







≥ 1− ε

 

In this case we do in fact arrive at:  

  
g q,m( ) m→+∞

 → 1
 

If the Nomad observes groups in the worry-free or MPGP communities, the same can apply 

because 1qf  and 3qf  are also superior to ½. The last case to be considered is the case of worri-

ers, for which the probability of correct cascade is 2qf  . The condition can be written:  

  

fq2 =
q2

1− q + q
2( )

> 1 / 2 ⇔ q > 5 − 1( )/ 2

  

If this latter condition is not verified, the binamial law is based on a probability lower than ½ 

and, according to the law of large numbers: 

  
g q,m( ) m→+∞

 → 0
.   

 □  

Obviously, as there is not loss of generality, the same kind of result hold in case of high prob-

ability of occurrence. In this latter case, if a nomad observes groups in worriers, Bayesians or 

MPGP communities, he will gain a better idea of a given risk. In case of observations made in 

groups of worry-free agents, a better idea is gained under the same conditions as above.  

Therefore, participation in more than one group enables most of time an individual to gain a 

better idea of the risk and allows better mitigation strategies. For example, it is possible to 

understand the system of separation of powers (checks and balances in US) as a kind of pro-

tection against informational cascades about given subjects. This observation, when analysing 

behaviour in an uncertain universe, concords with many studies into the utility of ‘weak ties’ 

that allow individuals to draw additional information from their social environment (See no-

tably Granovetter 1973). But, if the signal is not very informative and that the environment is 

polarized by emotion contrary to the reality of the risk, “nomadism” can on the contrary rein-

force the process of information destruction. In this context, it is desirable, but only under 

conditions, that such kind of agent should pass on the information obtained by comparison 

with other sources in a public manner. This would presuppose to take a public signal into con-

sideration in a new model. Thus, if several conditions are met, even if establishing links is 

costly at individual level, the collectivity can benefit from such agents. Internet, for example, 

might constitute a crucial tool in this context. More generally, diffusion of risk information, 

after compiling wide range of risk levels and probabilities could be of great help.  

Other structures may be envisaged as channels to improve information efficiency. Once again, 

they are based on types of agents with certain specific characteristics.  

 



 14 

4 – Avoiding information destruction: resiliency to conformity  

Overconfidence and resiliency to conformity constitutes a second way to improve information 

efficiency. The individuals we identify here as “overconfident” are agents who place more 

weight on their own information than Bayesian individuals. According to DeBondt and Thaler 

(1995) “Perhaps the most robust finding in psychology of judgement is that people are over-

confident”. Such overconfidence induces individuals to undertake actions that more rational 

individuals might not undertake. Particularly, overconfidence is central to understand risk 

related behaviour when agents are uncertain about the probability of occurrence. 

Their behaviour appears suboptimal at the individual level, but can enable cascades to be bro-

ken and, consequently, may provide new information at the collective level. A non-zero pro-

portion of such agents might in this way turn out to be optimal at the collective level if the 

aim is to grasp the real probability of occurrence of a given risk and put in place accurate mit-

igation processes. We suppose here that the majority of agents behave in accordance with the 

model we have described above. If the latter were the only category of individual, once a cas-

cade was set up it would no longer be possible to infer agents’ personal signals since their 

behaviour will not be dependent on it. Conversely, “overconfident” individuals are more scep-

tical about outside information and more enthusiastic about information that is internal – their 

own. The presence of such overconfident individuals who act on their own information and 

can ignore the actions of others in the group has been demonstrated in laboratory settings by 

Anderson and Holt (1996). How is risk related behaviour, both individual and collective, 

modified by this phenomenon? 

Overconfidence can be captured formally as follows. The process unfolds as if the “overcon-

fident” agents believed – wrongly – that the accuracy of their own signal is 'q q> . We have 

seen in the general case that it is sufficient for the first two individuals to adopt the same be-

lief for all those who follow to adopt it in turn. In this new context, we suppose that k individ-

uals are required (where   k ≥ 2 ) to convince these excessively confident agents. k and – k are 

said to be ‘absorbing states’. Obviously, the value of k depends directly from q’. A distinction 

can be made between two extreme cases:  

- If 'q q= , then all the individuals will behave in a Bayesian fashion, where k=2.  

- If ' 1q = , then the state is said to be ‘critical’ and k = +∞ .  

Proposition 3 : If k  is designed as the level of overconfidence, the probability of correct be-

lief about p, whatever the proportion of overconfident agents, can be written7 :  

( )
( )1

k

q
kk

q
f k

q q
=

+ −
 

Proof : Let us denote as nD  the difference between the numbers of ‘low probability’ and 

‘high probability’ signals that can be inferred after n individuals, while keeping in mind that 

the actual probability is low (the opposit case can be dealt with symmetrically). Considering, 

as above, that each of the groups has a very large number of individuals, we can calculate the 

                                                 
7 This result is not modified in case of homophily between groups. Indeed, in case of homophily, only the tie-

breaking assumptions are modified by a change in the perception of the signal q (perceived as q+x or q-x). But, 

the value of x is assumed to be very low and produces a change in decisions only if the number of opposit signals 

are equal. In other words, we assume x<<q’- q, which does not modify the result below.   
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probability of a correct (or, respectively, incorrect) cascade. Even if confident agents are pre-

sent in very small proportion, there will be no cascade so long as nD k< . We suppose again 

that there is a very large number of agents, such as to ensure that there is always a cascade.  

The probability of observing a correct (or, respectively, incorrect) cascade can be calculated 

in the same way as for the gambler’s ruin problem. The process unfolds as if the gambler 

were in possession of k euros at the start, with a probability q (1-q respectively) of winning 

(or losing, respectively) one additional euro at each bet. Will he reach 2.k euros first or be 

ruined? The first case corresponds to a correct cascade, the second to an incorrect cascade.  

We know that the probability he will win is a weighted sum of the probabilities of a win in the 

bets that follow, which is written: 

  P(2.k / k) = q.P(2.k / k + 1) + (1− q).P(2.k / k − 1)  

The characteristic polynomial of this recurrence relation is written:  

2 1
0

x q
x

q q

−
− + = , which has 1 and 

1 q

q

−
 as its roots, and which gives:  

  

P(2.k / k) = A + B.
1− q

q








k

  

The ‘boundary’ conditions give:  

  

A + B = 0

A + B.
1− q

q








2.k

= 1

 

and we then find:  

( )
( )

1
(2. / )

11
1

k

q
k kk

q
P k k f k

q qq

q

= = =
+ − −

+  
 

 

 □  

In the same way, the – complementary – probability that there will be an incorrect cascade 

(possibly after a very large number of agents if there are only a few individuals with exagger-

ated confidence in their own information) is written:  

( )
( )

( )

1
1

1

k

q
kk

q
f k

q q

−
− =

+ −
.  

And we do find once again in the Bayesian case the proportions seen above:  
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( )22

2

1 qq

q
fq

−+
=

 

( )

( )22

2

1

1
1

qq

q
fq

−+

−
=−

 

We can see below the variations of the proportions established with the parameters q (signal 

strength) and k (degree of confidence in their information felt by so-called ‘confident’ indi-

viduals).  

 

Figure 3 : Proportions of correct/incorrect cascades in the presence of overconfidence 

We can see here that individuals who present excess of confidence in their own information 

can limit collective inefficiency in addressing risk. By ignoring informational cascade, the 

actions of overconfident individuals convey their private information. Obviously, the degree 

of confidence is of prime importance for the capacity of such agents to withstand cascades. 

Nevertheless, when the groups of individuals are very large, even a tiny proportion of such 

individuals will enable the formulation of more accurate judgements as to the probability of 

occurrence of a risk. We must bear in mind that this type of behaviour is efficient at the col-

lective level (as it allows to adopt better mitigation actions), but costly for each of these indi-

viduals, who do not evaluate the probability of occurrence optimally. Thus, they adopt unsuit-

able (too weak or too strong) protective measures. For example, a low level in fear of crime 

can enable overconfident agents to go outside despite the danger while restoring confidence in 

the neighbourhood. Therefore, it may be possible to envisage compensating such agents – by 

an insurance scheme, for example - while having them into groups within which the percep-

tion of probability is an obstacle to the implementation of efficient safety policy. 

good cascades k=2
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Conclusion 

The modelling carried out above tends to analyze a characteristic of inefficiency in the shar-

ing of information, which supplements both the research on risk evaluation by agents and the 

economics of social interactions. Group polarization and localized conformity can be ampli-

fied when similar individuals group together (ex ante polarization). We then considered some 

additional characteristics capable of improving informational efficiency. Firstly, considering 

the case of individuals – “Nomads” - using more than one source of information. Under con-

ditions, Nomads have more chances of accessing correct information. We examined next the 

impact of the presence of overconfident agents able to ‘break’ conventional cascades by 

providing additional information to the community. Obviously, while such models give us a 

better understanding of the intricacies of risk perception, they do not provide us with a ‘turn-

key’ solution for evaluation of the informational biases highlighted. Several avenues for fu-

ture researches can be evoked.  

Firstly, it seems important to conceive more complex interconnected groups with the possibil-

ity of strong and weak links as well as differential distances between agents. Secondly, it 

would be of interest to understand – in such kind of interconnected groups – how the specific 

agents analyzed in this paper should pass on the information obtained by comparison with 

other sources in a public manner. More generally, we should analyze the effects of such 

agents on cascades if they grasp information before that cascades have occurred. For this, a 

public or private signal – through Internet, for example – could be taken into consideration in 

a new model. Thirdly, it would be of interest to understand the determinants of ‘worry’ and 

‘worry-free’ attitudes to risk depicted in section 2. Does the age, the education, the wealth… 

of the agents, for example, have any real influence on the way in which they perceive risk?  
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